Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation
نویسندگان
چکیده
Large-eddy simulations described here have included the effect of canopy drag through the depth of a plant canopy. Specifically, we have considered the simulation of flow through a forest. Drag forces enter the simulation with the inclusion of form and viscous drag forces in the momentum equation. In addition, we have carried a variable to represent the kinetic energy (KE) associated with the turbulent wakes behind canopy elements. Assigning typical dimensions to canopy drag elements and, hence, to the scale of wake turbulence, we have evaluated wake effects on the dissipation process and on subgrid-scale (SGS) energy arising from the cascade of resolved-scale energy. Despite the fact that the rate of conversion of resolved-scale kinetic energy to wake energy is large, and the observation that wake energy is comparable with SGS energy, an effective diffusivity for wake turbulence can be ignored when calculated from wake-scale kinetic energy and a length scale based on element dimension. Thus, it is unnecessary to carry a wake energy variable in the simulation. On the other hand, it is very important that the process of conversion of SGS energy to wake-scale energy be included in the simulation because the action of wakes is to enhance the dissipation of SGS energy. Viscous drag appears to be of little consequence, at least in our calculations where elements are considered as flat plates and fully exposed to the grid-averaged flow. © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملA stochastic extension of the explicit algebraic subgrid-scale models
Articles you may be interested in Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of passive-scalar mixing in turbulent flow at low and high Schmidt numbers The physics of energy transfer toward improved subgrid-scale models A hybrid subgrid-scale model constrained by Reynolds stress A dynamic subgrid-scale eddy viscosity model with a global ...
متن کاملA vortex-based subgrid stress model for large-eddy simulation
A class of subgrid stress ~SGS! models for large-eddy simulation ~LES! is presented based on the idea of structure-based Reynolds-stress closure. The subgrid structure of the turbulence is assumed to consist of stretched vortices whose orientations are determined by the resolved velocity field. An equation which relates the subgrid stress to the structure orientation and the subgrid kinetic ene...
متن کاملA localised subgrid scale model for fluid dynamical simulations in astrophysics I: Theory and numerical tests
We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamica...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کامل